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Abstract

A computational procedure for multiple wave scattering in unidirectional fiber-reinforced composite materials is
presented. The present study deals with the time-harmonic propagation of shear waves polarized parallel to the fibers.
The exciting and scattered fields for each fiber are expressed by the eigenfunction expansion, and a collocation method
is used to determine the expansion coefficients numerically. With this procedure, detailed aspects of the shear wave
scattering and propagation in unidirectional SiC/Ti-alloy composite with periodic as well as random fiber arrangements
are demonstrated, including the dispersion relation and the energy transmission behavior. The analysis recovers that the
wave with a sufficiently long wavelength propagates as a sinusoidal plane wave insensitively to the fiber arrangement.
As the wavelength becomes comparable to the fiber spacing, the wave field gains complicated appearances specific to the
fiber arrangement. For the periodic fiber arrangements, it is shown that the wave ceases to propagate in the composite
in certain frequency bands. The wave fields in such stop bands are shown to possess a standing-wave nature and involve
spatially decaying amplitudes and vanishing energy flow in the propagation direction. Numerical results are also shown
for a random fiber distribution in order to demonstrate the applicability of the present scheme to arbitrary fiber
arrangements. The computed phase velocities and the energy transmission ratios for the random composite compare
favorably with those predicted by an existing multiple scattering theory.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Propagation of elastic waves in composite materials is one of the key issues regarding their dynamic
performance and nondestructive characterization. Ultrasonic nondestructive evaluation of composite
materials relies on the information of their wave velocity or attenuation properties obtained by the analysis
of transmitted or reflected ultrasonic signals (Kline, 1992). To enhance the qualitative as well as quanti-
tative understanding of the evaluation principles, it is of importance to gain detailed knowledge on the wave
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propagation behavior in composites. For fiber-reinforced composite materials, one needs to consider a
complex process of multiple scattering that occurs as the incident wave interacts with the fibers.

Multiple scattering of elastic waves in fiber-reinforced composite materials have been considered by
many authors, including Bose and Mal (1973, 1974), Varadan et al. (1978, 1986), Datta et al. (1984), Liu
and Kriz (1998), Kim (2003) to name but a few. Among them, Yang and Mal (1994), and then Huang and
Rokhlin (1995), applied a generalized self-consistent model of fiber composites to the Waterman—Truell
multiple scattering theory (Waterman and Truell, 1961) to extend its applicability to moderate fiber volume
fractions. Other theories so far formulated include the variational principles (Talbot and Willis, 1983), the
differential (incremental) scheme (Beltzer and Brauner, 1987; Biwa et al., 2003), etc, for randomly arranged
fiber composites. On the other hand, homogenization techniques based on asymptotic expansions or the
Bloch theorem have been applied to wave propagation in composites with regular and periodic fiber
arrangements (Nelson and Navi, 1975; Murakami and Hegemier, 1986; Naciri et al., 1994). Such periodic
composites recently attract much attention regarding the phononic band gap structures and their acoustic
applications (Kushwaha et al., 1993, 1994).

Recently, Cai and Williams (1999a) proposed a numerical simulation technique for large-scale multiple
scalar wave scattering in fiber-reinforced composites based on a procedure called scatterer polymerization.
In this procedure, a group of several scatterers is successively replaced by a single equivalent scatterer,
which enables to perform the computation for many-fiber problems with reasonable computational costs.
They demonstrated multiple scattering of a scalar shear wave in a unidirectional composite with square
fiber arrangements (Cai and Williams, 1999b,¢). This technique is, however, not suitable for examining the
wave field within the composite, since the original fiber arrangements are lost in the polymerization pro-
cedure.

In order to carry out a more straightforward and detailed analysis of the wave field in fiber/matrix
composites, an alternative computational approach is presented in this paper for the multiple scattering
problem, where the time-harmonic wave field is expressed in terms of the eigenfunction expansion of the
scattered wave associated to each fiber. The expansion coefficients are determined numerically using a
collocation technique. In this paper, the shear wave mode with the polarization parallel to the fiber
direction is considered, as its scalar wave nature is suitable to delineate the essential features of multiple
scattering. The present analysis enables detailed examination of the wave structure in the composite in a
direct manner.

In what follows, first the basic formulation of the multiple scattering for the scalar shear wave in uni-
directional composites is summarized, and a computational procedure to attack the problem is put forward.
As an application of the present technique, the shear wave scattering and the overall wave propagation
behavior in unidirectional SiC fiber-reinforced Ti-alloy matrix composites are analyzed. Our attention is
first focused on the examples for regular fiber arrangements. Namely, for the square as well as hexagonal
fiber arrangements, the wave fields in the composite are demonstrated for different frequencies, and the
dispersion relation and the energy transmission behavior are illustrated. In addition, a case with irregular
distribution of fibers is also treated in order to demonstrate the applicability of the present scheme to
arbitrary fiber arrangements. The results obtained by the present analysis are discussed in comparison to
the results based on the above-mentioned multiple scattering model by Yang and Mal (1994).

2. Fundamental equations of multiple wave scattering

In this section, the basic equations for the multiple scattering of scalar wave in two-dimensional com-
posite media are recapitulated, which are common to the above-mentioned foregoing works, e.g. Varadan
et al. (1978), Datta et al. (1984). The present paper deals with a unidirectional fiber-reinforced composite
material consisting of an isotropic elastic infinite matrix (density p,;, shear modulus y,) with N circular,
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isotropic elastic fibers of radius a (density p,, shear modulus p,), as schematically shown in Fig. 1. In the
x1—x, plane shown in Fig. 1, the fibers can take an arbitrary arrangement. When the plane transverse (shear)
wave with polarization parallel to the fibers is incident in the positive x; direction, the wave field within the
x1—x, plane can be formulated in the framework of scalar wave propagation, since no mode conversion
occurs at wave scattering by each fiber and the only nontrivial displacement components are in the x;
direction.

In the absence of body forces, the equation of motion for the displacement u in the x; direction
reads

o 1 d%u
— 4~ Ju—="=0 1
(axﬁaxg)” a2 m
for the matrix (x = 1) and for the fibers (o = 2), respectively, where ¢, = (u,/ pl)l/ % is the shear wave
speed in the respective medium. As a monochromatic wave motion with temporal dependence exp(—iw?)

is solely considered (w: angular frequency), Eq. (1) reduces to the scalar Helmholtz equation for
u(xi, x2);

0 )
——+= |utku=0, (2)
(ax% ox3

where k, is the wave number in each medium, i.e. k, = w/c, (o« = 1,2). Hereafter, the time-dependent factor
exp(—iwt) is omitted in all relevant physical quantities and the complex notation is used, where real parts
are to represent the actual wave field. The incident wave is assumed to be a plane wave with unit amplitude
propagating in the positive x; direction, expressed in complex notation as

uinc(r) = exp(iki; - 1), (3)

where r is the position vector and i; the unit vector in the x; direction.
In the presence of N fibers, the wave field in the matrix is written as

u(r) = u™(r) + Z u;* (), )

where #*(r) denotes the wave scattered by the ith fiber. Since u}®(r) is an out-going diverging solution

to Eq. (2), it can be expanded using the eigenfunctions in local polar coordinates as (Pao and Mow,
1971)

we(r) = > b H, (ki |r — xi]) exp(ind;), (5)

n=—0o0

Fig. 1. Schematic representation of a unidirectional fiber-reinforced composite.
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where r; is the position of the center of the ith fiber, and 6, is the angular coordinate when r is viewed from r;
(Fig. 1), and H,(-) is the nth order Hankel function of the first kind. The expansion coefficients b’
(n=0,%+1,£2,...) are yet unknown parameters.

The wave field near r; that would result if the ith fiber were not there is referred to as the exciting field to
that fiber, and is expressed as

N [ee)
U () = u (1) + S wt (1) = Y ald,(klr 1) exp(ing), (6)
iz o

since it is a solution to Eq. (2) with no singularity at r;, where @’ (n =0,%1,£2,...) are the expansion
coefficients and J,(-) is the nth order Bessel function of the first kind. The ith fiber is irradiated by the
exciting field uf* and gives rise to the scattered wave u;*. It is known that for circular cylindrical fibers
bonded to the matrix, the coefficients in their expansions can be related linearly as

g kR0, (Rea) — ok, (k) (ea) )
T wkoH, (ka)g)(kea) — ki H (k) g, (kea)
where the prime () denotes differentiation of the Bessel or Hankel functions with respect to their arguments.
Here, 7, are the components of the so-called T-matrix (Waterman, 1969), which becomes diagonal for
circular fibers.

Likewise, the refracted wave field inside the ith fiber is expanded as

o0

ut(r) = ) e Julkalr — 1) exp(ind),), ®

n=—0o0

i i Ju(kia) + T,H,(kia)

d=8a, S, = Totad) . 9)
The relations in Egs. (7) and (9) stem from the requirement of the continuity of the displacement and the
shear traction at the fiber—matrix interface.

From the above equations, the expansion coefficients for the scattered, exciting and refracted waves can
be determined, which in turn give the wave field in the composite. For a large number of fibers, however, it
is intractable to seek for an analytical solution of the above system of equations. In most of the foregoing
multiple scattering theories (Sobczyk, 1985; Varadan et al., 1989), the positions of the fibers are assumed as
random variables and the configurational average of the wave field is considered. Assumptions such as the
quasi-crystalline approximation or the total wave approximation are then employed to truncate the infinite
hierarchy of the resulting set of integral equations, yielding some well known formulae (Foldy, 1945;
Waterman and Truell, 1961). In the present paper, the above equations are solved directly using a nu-
merical collocation technique. Therefore, the present procedure as described below is capable of dealing
with regular or irregular fiber arrangements explicitly.

3. Computational procedure

In order to solve the equations formulated above, the infinite sums of the eigenfunction expansions in
Egs. (5), (6) and (8) are truncated at a finite level, i.e. n = 0, +1, 42, ..., £n,, The integer parameter ry,x
is chosen as an appropriate number depending on each specific problem. When the wavelength of the
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incident wave is large compared to the fiber diameter, it is often sufficient to take the sums up to small

nmax .

When Egs. (3), (5) and (7) are substituted into Eq. (6), one obtains

HAmax N Nmax
Z a J,(ki|r — x;]) exp(in0;) = exp(ikiiy - r) + Z Z T,.@ H,(ki|r — r;]) exp(imb;), (10)
N=—MNmax j=1 M=—Nmax
J#

which constitutes a set of equations in terms of the N X (2ny,, + 1) expansion coefficients of the exciting
field ¢/ (i=1,2,...,N; n=0,£1,£2,...,£nm,). In the present analysis, a collocation method is em-
ployed to obtain a linear set of N X (2ny,, + 1) equations to determine these coefficients, i.e., by evaluating
the coefficients of «/ in Eq. (10) at (2nm. + 1) points for each of N fibers. In the present modeling,
(2nmax + 1) collocation points are taken at equally distanced positions on the circular boundary between the
matrix and each fiber.

When analyzing wave propagation in fiber composites, one of our main interests lies in the wave
structure along the propagation path. To keep the computation tractable while retaining enough degrees of
freedom in the propagation direction, it appears reasonable to assume certain periodicity of the fiber ar-
rangement in the direction perpendicular to the propagation direction. To this purpose, as shown in Fig. 2,
the fiber arrangement in the composite is assumed to be a consequence of building up “fundamental”
blocks in the x, direction. A fundamental block has a dimension of L x H and contains N fibers, in which
the arrangement of the fibers can be either regular or random. The whole composite is constructed by
repeating these blocks in the vertical direction, so that infinite fibers are distributed within the region
0<x; <L.

In this situation, it is expected that the wave field in the composite becomes periodic in the x, direction
with period H. Therefore, the exciting field for a generic fiber in a fundamental block becomes identical to
those for the corresponding fibers in other blocks. When Eq. (10) is applied to the whole composite and a
use is made of this periodicity nature, the equations for the whole system can be reduced to
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Fig. 2. Periodic structure of fundamental blocks.
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Nmax

Z a' J,(ki|r — r;]) exp(inb;)

= exp(ikiy - r Z Z Z T.@, H,(ki|x — (r; + pHiy)|) exp(im0);,)
p=—00 ;1 M=—MNmax
j#i
+ Z Z Ta H,(ki[r — (r; + pHi,)|) exp(im0,,), (11)
p=—00 M=—Nmax
p#0

where i, is the unit vector in the x, direction, and 0;, is the angular coordinate when the position r is viewed
from the fiber at r; + pHi,, corresponding to the ith fiber in a block translated by p blocks in the x, direction
(p=0,£1,£2,...). Thus the equations for infinite fibers in the region 0 < x; < L of the composite have
been represented in terms of the expansion coefficients for the N fibers in one fundamental block covering
O<x1<L,0<x<H.

In this formulation, the wave field in the composite is characterized by N X (2n,x + 1) parameters. In
the case when ny,, can be chosen as a small number (i.e. when the frequency under question is relatively
low), this is considered to be particularly advantageous from a computational viewpoint, compared to
other numerical methods such as finite element or boundary element techniques where the whole regions or
the fiber—-matrix boundaries need to be discretized into many small elements.

If once the coefficients a/, are determined, the wave field in the composite can be calculated as

Nmax

u(r) = exp(ikyiy - r +Z > Td, ZH (ki|r — (v; + pHiy)|) exp(ind,,) (12)

=1 n=—Nmax

in the matrix, and

U (r) = Z S,d.J, (ka|r — 1;]) exp(inb;) (13)

N=—Nmax

in the fiber at r;.

4. Application to periodic composites
4.1. Computational model

The computational procedure proposed above is now applied to analyze the wave scattering and the
overall wave propagation in a unidirectional composite consisting of Ti-alloy matrix and SiC fibers. The
material properties of these constituents are summarized in Table 1. Effects of the coating layer or the fiber/
matrix debonding damage in this composite system have been analyzed previously (Rokhlin et al., 1995;

Table 1
Material parameters used for numerical analysis
Matrix (Ti-alloy) Fiber (SiC)
i (GPa) pi (kg/m?) 1y (GPa) p (kg/m’)

45 5400 177 3200
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Biwa and Shibata, 2000). In this paper, however, such effects are ignored to keep simplicity of the analysis:
the fibers are directly bonded to the matrix and the fiber radius is set as 71 pm (Rokhlin et al., 1995). The
extension to the case involving the finite compliance of the fiber—matrix interface is not a difficult task as it
can be incorporated by modification of the 7-matrix formulation.

In this chapter, the composites with regular and periodic fiber arrangements are examined. Two types of
fiber arrangements are considered in the fundamental block. The first case is a regular square arrangement
with 80 fibers in the x; direction and 2 fibers in the x, direction, Fig. 3(a). The second case is a hexagonal
arrangement, having 160 fibers likewise in the fundamental block as in Fig. 3(b). By changing the fiber
spacing and the total size of the fundamental block, the volume fraction of the fibers in a fundamental
block is varied in the numerical model.

When the frequency is sufficiently low and the wavelength is much larger than the fiber radius, the
eigenfunction expansion of the wave field only requires a few leading terms. As the wavelength becomes
shorter (as the frequency becomes higher), an increasing number of terms need to be included in the
analysis. The necessity of higher-order terms also depends on the acoustic mismatch between the matrix
and fibers. After preliminary numerical experiments, the required number of the n-terms was estimated as a
function of the frequency. As a result, it has been found for the present SiC/Ti-alloy composite system that
for a frequency lower than 4 MHz it is numerically sufficient to take ny,.x to be 2. For an intermediate range
of 4-10 MHz, ny,.y is taken as 3 or 4, while for the range of 10-15 MHz, n,,y is taken as 5 or 6. For a typical
example, Fig. 4 shows a part of the total wave field Re[u] along the x,-axis at x, = H/2 for different
truncation levels of ny. for the square fiber arrangement and for the frequency of 5 MHz, where the
truncation at np,,, = 3 is shown to be sufficient.

The influence of truncating the sums over p in Egs. (11)-(13) was also examined, and the summation up
to at least +100, +200 and +500 was typically required from a numerical viewpoint for the above three
frequency ranges, respectively, for the particular composite system analyzed here. The level of truncation
was verified on a numerical basis by confirming satisfactory agreement between the numerical results
obtained with different levels of truncation. Furthermore, the numerical results were found to be insensitive
to the particular choice for the location of the equally spaced collocation points on the fiber-matrix
boundaries.

E (80 fli_bers) E
_3li000000¢ DOO|
3_399_9_@_99_9 jJele]
@ | i
. :
b i

Fig. 3. Regular fiber distributions in a fundamental block, (a) square arrangement, (b) hexagonal arrangement.
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Fig. 4. The wave field Re[u] along the x,-axis at x, = H /2 for different truncation levels of 7, for the square fiber arrangement and for
the frequency of 5 MHz.

4.2. Wave field in the composite

For the unidirectional SiC/Ti-alloy composite, the wave field is computed by Eq. (12) (in the matrix) and
Eq. (13) (in the fibers) after determining the eigenfunction expansion coefficients by the numerical collo-
cation procedure described above. For the fiber volume fraction ¢ = 0.25, the wave fields in the composite
given by Re[u] are shown at different frequency levels, for the square fiber arrangement in Fig. 5 and for the
hexagonal fiber arrangement in Fig. 6. For this fiber volume fraction and the assumed fiber radius of 0.071
mm, the center-to-center fiber spacing is about 0.25 and 0.27 mm for the square and hexagonal fiber
arrangements, respectively.

Figs. 5(a) and 6(a) correspond to the frequency f = w/(2n) of 1 MHz, for which the wavelength in the
matrix is ¢;/f = 2.89 mm (the ratio of the fiber radius to the wavelength fa/c; = 0.025), and the wave
fields are shown for a region 0 <x; <20 mm and 0 <x, < 0.5 mm that approximately covers one
fundamental block. Figs. 5(b) and 6(b) for 4 MHz, ¢;/f = 0.72 mm (fa/c; = 0.1), are for one quarter of
the fundamental block, 0 <x; <5 mm, and Figs. 5(d) and 6(d) for 10 MHz, c¢;/f =0.29 mm
(fa/ci = 0.25), are for one tenth of it, 0 < x; < 2 mm. Likewise, Fig. 5(c) for 6.6 MHz (fa/c; = 0.16)
corresponds to the region 0 < x; < 4 mm, and Fig. 6(c) for 8.4 MHz (fa/c; = 0.21) to 0 < x; < 3 mm.
In this way, more or less similar numbers of the wavelengths are illustrated for all frequencies in Figs. 5
and 6.

From Figs. 5(a) and 6(a), it is readily found that at the lowest frequency of 1 MHz, the wave fields in
the composite for square and hexagonal fiber arrangements do not differ from each other very much.
Furthermore, they appear to be an essentially sinusoidal plane wave, indicating the negligible influence
of the fiber arrangement on the wave field at sufficiently low frequency. However, as the frequency be-
comes higher, the wave fields show different appearances depending on the fiber arrangement, and are
no longer simple plane waves. Especially in the high frequency cases of Figs. 5(d) and 6(d), the wave
fields are fairly complex as the fiber spacing is comparable to the wavelength. In these plots, some of the
fiber positions can be visibly identified as relatively flat spots since the fibers are stiffer than the
matrix.

It should be noted that while Fig. 5(a), (b) and (d) as well as Fig. 6(a), (b) and (d) show the behavior of
propagating waves with spatial periodicity, Figs. 5(c) and 6(c) exhibit completely different characteristics.
Namely, at 6.6 MHz in the case of square arrangement and at 8.4 MHz in the case of hexagonal ar-
rangement, the wave amplitude appears to decay drastically as one goes to the positive x; direction. These
frequencies correspond to the so-called stop bands, which will be discussed in more detail in the following
sections.
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Fig. 5. Wave field in the composite with square fiber arrangement, ¢ = 0.25, at (a) 1 MHz (fa/c, = 0.025), (b) 4 MHz ( fa/c; = 0.1),
(c) 6.6 MHz (fa/c; = 0.16) and (d) 10 MHz (fa/c; = 0.25).

4.3. Dispersion relation

Fig. 7 shows the computed total wave field along the x; direction in the composite with the square fiber
arrangement, when the frequency is 1 MHz and the fiber volume fraction is ¢ = 0.25 and 0.5. The curves in
Fig. 7 represent the total wave field along the centerline of the fundamental block at x, = H /2, with the
arrows indicating the composite region sandwiched by the two semi-infinite regions of the matrix. These
curves are compared to the case of ¢ = 0 showing the incident wave in the matrix that would result if there
were no fibers present. As the fiber volume fraction is increased, the wavelength of the total wave in the
composite increases, which means that the phase velocity in the composite increases as the fiber fraction is
increased. By fitting these curves with a sinusoidal function or applying the fast Fourier transform (FFT) to
them, the wave number in the composite can be identified. This procedure was also applied to other
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Fig. 5 (continued)

computed wave fields, and the wave number in the composite was obtained as a function of the frequency,
for the square as well as for the hexagonal fiber arrangements.

The relation between the so-obtained wave number & and the frequency f is plotted in Fig. 8(a) and (b)
for the square and hexagonal fiber arrangements, respectively, and for two different fiber volume fractions.
In Fig. 8, the wave numbers are normalized as kd/n, where the center-to-center fiber spacing d is given by

T
d=,|—a 14a
" (14a)
for the square arrangement, and by
2
d= 24 (14b)

V3¢
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Fig. 6. Wave field in the composite with hexagonal fiber arrangement, ¢ = 0.25, at (a) 1 MHz (fa/c, = 0.025), (b) 4 MHz ( fa/c; = 0.1),
(c) 8.4 MHz (fa/c; = 0.21) and (d) 10 MHz (fa/c; = 0.25).

for the hexagonal arrangement, for each fiber volume fraction ¢. These plots show the dispersion relation
of the shear wave in the periodic composite at hand. At some locations of the dispersion curve, however, the
wave number appears to stagnate against increasing frequency. In other words, the frequency exhibits a
finite jump at these wave numbers.

For the square arrangement, this has occurred at kd = n and kd = 2=, corresponding to the Bragg re-
flection well known in solid state physics (Kittel, 1976), from the neighboring fiber planes normal to the
propagation direction. For the hexagonal arrangement, the corresponding locations are found at kd = 4n/3
and kd = 2n. The former condition corresponds to the Bragg reflection from the fiber planes inclined by 7/6
rad to the propagation direction, while the latter to the reflection from the planes normal to the propa-
gation direction. The frequency ranges giving the above tendency are referred to as stop bands, in common
terminology for the wave propagation in periodic systems. The frequencies for Figs. 5(c) and 6(c), where the
wave amplitude has been found to decay spatially, are within the stop bands for the composite.



446

4.4. Phase velocity

S. Biwa et al. | International Journal of Solids and Structures 41 (2004) 435-457

Lo i
““\\\\x -
08 ‘t\‘“ et
_ \\\\\\\““t‘“ﬂ“o:,};"/, Auu
= ‘“\“““ S A
e 001 RN \
[/ \\\‘\‘\\“‘ W,’.W, Wil
REIRR s LGN
W () \m\“‘y’, KK
A0 NN
LETTRY \\\\\\\\\\\’i";“t'o'o'l""
Wikesae
Sy
e 0.5
(C) 370.0 x5 [mm]
— 7 &
L6 eSS
LR ““ .
0.5 IR oo
2 0.07- VARG RAOOTRIIN
-0.8 Y s Y
9
-1.6 W
““::‘:\\\‘\‘ .‘::‘:O (\ W
ORI \
NS
AR S
R ‘.“‘»:.‘;,','r.‘: X
N
4 0.5
T 0.2
Y 2700 ™ %) [mm]

Fig. 6 (continued)

In Fig. 9(a) and (b), the phase velocity of the composite is plotted as a function of the frequency for the
fiber volume fractions ¢ = 0.25 and 0.5, for the square and hexagonal arrangements, respectively. The
phase velocity has been obtained from the dispersion curves in Fig. 8 by the relation ¢ = w/k and nor-
malized by the matrix shear wave speed ¢; = 2887 m/s. It is noted though that within the stop bands in-
dicated by arrows the wave ceases to possess a propagating nature and the usage of the term of phase
velocity becomes somewhat inadequate. As shown in Fig. 9, the phase velocity shows substantial fluctu-
ation in the vicinity of the stop bands. This feature is akin to the experimental results by Kinra and Ker
(1983) and Henderson et al. (2001) for the longitudinal wave propagation in periodic particle-reinforced
composites.
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Fig. 7. Wave field along the propagation direction (at x, = H/2) in the composite with square fiber arrangement at 1 MHz, for ¢ =
(a) 0, (b) 0.25 and (c) 0.5. The arrows denote the region occupied by the composite.

According to the multiple scattering theory by Waterman and Truell (1961), the effective complex wave
number k. of the mean wave in a random fiber composite is given by

where n; = ¢/(na?) is the number of fibers in a unit volume. In the above expression, the complex quantities
F(0) and F(n) are the forward and backward scattering amplitudes for a single fiber embedded in the
infinite matrix.

The Waterman-Truell formula in Eq. (15) was derived by neglecting the statistical correlation between
the scatterer positions in the medium, and its applicability to dense fiber distribution becomes questionable.
Based on the concept of a generalized self-consistent model, Yang and Mal (1994) modified the Waterman—
Truell theory, and showed that the complex wave number of the composite satisfies

IZ{I_M}C{M}Z, (16)

2 2
keff keff

The forward and backward scattering amplitudes in the above expression correspond to a composite
scatterer made of the fiber and the annular concentric matrix, which is embedded in an infinite medium
having the averaged macroscopic property of the composite. Since these quantities are implicitly dependent
on the unknown variable k., the above equation is solved iteratively until sufficient convergence is reached.
The phase velocity is obtained from the real part of the complex wave number as ¢ = w/Re[keg]. In Fig. 9,
the phase velocities computed by the Yang—Mal model, which considers random fiber arrangements, are
compared to the results obtained from the present numerical scattering analysis.
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Comparing the results in Fig. 9, it is seen that the Yang-Mal model gives the phase velocities that are
close to the present results for both 25% and 50% fiber volume fractions and for both square and hexagonal
fiber arrangements, except in the neighborhood of the stop bands identified by the arrows. When the
frequency is sufficiently low, the phase velocities of the composite for square and hexagonal fiber ar-
rangements are both indistinguishable from the results by the Yang—Mal model. Thus one recovers that the
low frequency (long wavelength) propagation behavior is not sensitive to the fiber arrangement, as already
seen in the wave fields shown in Figs. 5(a) and 6(a).

4.5. Energy transmission
To discuss in detail the character of the wave fields shown above, the energy flow associated to the wave

motion is considered. When the complex notation is employed to denote the wave displacement u, the time-
averaged energy flow across a surface normal to the propagation direction is given by (Pao and Mow, 1971)
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when averaged along the x, direction, where the shear modulus u takes on a value of g, or u, depending on
the position on the integration path. The superscript (*) denotes the complex conjugate of a complex

variable. In the absence of the fibers, the time-averaged energy flow per unit area of the surface normal to
the propagation direction is given by

wkyp
(ey = 2311, (18)
when the wave has the unit amplitude. The normalized energy flow (e)(x,)/(e), then represents the ratio of
the transmitted energy flow of the total wave in the composite to that of the incident wave.
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Since both the matrix and the fibers are assumed elastic here, the conservation of the energy implies that
(e)(x1)/({e), is independent of x;. This has been verified in the present numerical analysis within the ac-
curacy of the computation. So the attention is paid to the value of (e)(x1)/{e), at a single location of
x; = 1.1L (just past the composite region) in this discussion.

The values of (e)/(e), are thus plotted against the frequency in Fig. 10 for the square and the hexagonal
arrangements when the fiber volume fraction is 0.25. In Fig. 10(a) for the square arrangement, it is shown
that below 5 MHz roughly the normalized energy flow is almost unity. Therefore, the wave fields shown in
Fig. 5(a) (1 MHz) and (b) (4 MHz) corresponds to the case where the energy is fully transmitted in the
propagation direction. On the other hand, in a finite frequency band containing the frequency of 6.6 MHz,
relating to Fig. 5(c), the level of the energy flow is seen to be null. This indicates that the wave field in Fig.
5(c) corresponds to a standing wave rather than a propagating wave. In fact, an inspection of the time-
dependent wave fields Re[u exp(—iwt)] for different 7 has revealed that at 6.6 MHz the particle points in the
entire domain move in phase. At 10 MHz, Fig. 5(d), the wave has recovered a propagating nature that
transports the full wave energy. The two stop bands shown in Fig. 10(a) coincides with the frequency
regions with constant wave numbers at kd = = and 27 in Fig. 8(a).

A similar trend can be seen in Fig. 10(b) for the hexagonal case, which confirms that the wave fields at 1
MHz, Fig. 6(a), and 4 MHz, Fig. 6(b), are fully propagating ones, while that at 8.4 MHz, Fig. 6(c), is of a
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Fig. 10. Variation of the normalized energy transmission with the frequency in the composite with (a) square and (b) hexagonal fiber
arrangements.
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standing-wave nature. The wave field at 10 MHz shown in Fig. 6(d) corresponds to a pass band, though the
energy transmission ratio is not unity but about 0.88. The two stop bands in Fig. 10(b) correspond to the
wave numbers kd = (4/3)n and 2= as indicated in Fig. 8(b). In the second stop band in Fig. 10(b), it is seen
that the energy transmission does not completely vanish but a small portion of the energy is transmitted to
the forward direction. In order to fully interpret such characteristics, computations of the band gap
structure for the whole Brillouin zone as presented by Kushwaha et al. (1993) seem more appropriate.

In passing, it is noted that the computation of the energy transmission for finer frequency divisions has
shown an oscillatory behavior especially near the stop bands, as demonstrated in Fig. 11. In the previous
figure (Fig. 10), such oscillations were not apparent as relatively coarse frequency intervals were employed
to outline the overall behavior. Fig. 11 compares the oscillatory frequency dependence of the energy
transmission near the first stop band of the square arrangement (5-9 MHz), for the present composite
model (L = 20.2 mm, 80x 2 fibers) and for another model with shorter L (L = 6.54 mm, 26 X 6 fibers) with
the same fiber volume fraction, ¢ = 0.25. The frequency intervals of these oscillations are well approxi-
mated by ¢;/(2L), indicating an effect due to the finite length of the composite region L employed in the
computational modeling. It is then expected that these oscillation tend to vanish for the infinitely extended
composite with complete periodicity.
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Fig. 11. Frequency dependence of the normalized energy transmission near the first stop band for the square arrangement with
¢ = 0.25, for (a) the composite with L = 20.2 mm and (b) the composite with L = 6.54 mm.



452 S. Biwa et al. | International Journal of Solids and Structures 41 (2004) 435-457

5. Application to a random composite
5.1. Computational model

As stated before, the present computational scheme is capable of dealing with arbitrary fiber arrange-
ments in the fundamental block. The results for periodic arrangements demonstrated above have recovered
some features pertinent to the wave propagation in periodic systems. In this chapter, some examples are
illustrated for the wave propagation characteristics in a composite with random fiber distribution.

In the examples in the previous chapter, the height of the fundamental block H corresponded to two
fiber arrays (Fig. 3) taking advantage of the periodic nature of the fiber arrangement. In order to model a
random distribution while to keep the computational demand in a reasonable range, the fundamental block
of the dimension L = 6.532 mm and H = 1.562 mm is employed. Within this block, total of 162 fibers are
arranged randomly according to a numerical algorithm called random sequential adsorption (RSA) (Feder,
1980) with a supplementary condition that the distance between two neighboring fiber centers meets
Ir; —1;| > 2.01la (i # j), as shown in Fig. 12. The fibers located near the boundaries x, = 0 and x, = H are
treated by the periodicity requirement common in RSA. This results in the fiber volume fraction ¢ = 0.25
that is fixed in the analysis of this chapter.

The arrangement in Fig. 12 is considered to be one realization of random fiber distributions. In order to
extract the characteristics of the mean wave or the so-called coherent wave (Tourin et al., 2000), compu-
tations are required for many of such arrangements. The purpose of this chapter is not to seek for this.
Instead, only one realization of Fig. 12 is employed to compute the wave propagation behavior (the wave
field, the phase velocity and the energy transmission) of a random composite and to show major differences
from the periodic composites shown above.

The material properties of the matrix and the fiber are the same as in Table 1. For the fixed fiber dis-
tribution of Fig. 12, the frequency is changed from 0 to 10 MHz (0 < (a/c;)f < 0.25 roughly). It is noted
that in a random composite, the fiber-to-fiber distance is not a fixed length but distributed in a certain
range. As seen in Fig. 12, some of the fibers are arranged very close to each other. Due to this nature, the
truncation levels of the parameters such as n,,,x have been validated numerically again for each frequency,
and higher values are eventually employed than in the corresponding cases of periodic arrangements shown
above.
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Fig. 12. Random fiber arrangement in the fundamental block (shown by the broken lines) used in the numerical analysis, together with
neighboring blocks containing the same fiber arrangement.
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5.2. Wave field in the composite

The wave fields corresponding to Figs. 5 and 6 are shown in Fig. 13 for the random composite when the
frequency is 1 MHz ((a/c))f =2 0.025), 4 MHz ((a/c)f = 0.1) and 7 MHz ((a/c;)f =2 0.175). For these
three frequencies, the wave field Re[u] in the fundamental block is demonstrated. Fig. 13(a) for 1 MHz
shows a sinusoidal plane wave similar to the corresponding periodic cases, Figs. 5(a) and 6(a), indicating
again the insensitivity of the long wavelength propagation characteristics to the detailed fiber arrangement.
Note again that the fiber locations can be identified visually as discrete spots.

The case with 4 MHz, Fig. 13(b), shows considerable deviation from sinusoidal plane wave forms. This is
in contrast to the periodic cases for the same frequency, Figs. 5(b) and 6(b), and partly attributed to the
irregular nature of the fiber arrangement. Also, in the random arrangement, many of the fibers are located
closer to each other than in the periodic cases, so the local interaction among the fibers may be more
prominent in the random case.

In Fig. 13(c), the wave field for 7 MHz is shown. This wave field is considered to be the outcome of
significant scattering from each of the fibers arranged irregularly. In particular, some high peaks are seen
near the left boundary of the fundamental block. The net time-averaged energy flow in the propagation
direction at this frequency is less than 40% of that for the incident wave, as shown in Fig. 15 given below.
This suggests the presence of substantial back scattering in the composite. Contrary to the periodic com-
posites, however, the scattered waves by the fibers do not interfere constructively in the random composite.

5.3. Phase velocity and energy transmission

The wave number and the phase velocity in the composite have been identified from the computed wave
field. To this end, the wave field Re[u] has been averaged in the x, direction, and a similar FFT procedure as
used in Section 4 has been employed in order to extract the wave number. Although the local wave number
of the computed average wave field varies slightly depending on the spatial position x; it is a single wave
number of an averaged character that is obtained by the present procedure. The so-obtained dispersion
relation has shown more or less linear increase of the wave number with the frequency. Although the
considered frequency range contains the first stop bands of the square and hexagonal composites with the
same fiber fraction, the result for the random composite has not revealed a frequency region giving a
constant wave number that indicates stop bands.

The phase velocity in the random composite computed from the wave number is plotted in Fig. 14 as a
function of the frequency, with the theoretical curve by the Yang—-Mal model in Eq. (16). In Fig. 14, the
computed phase velocity shows a weak fluctuation with the frequency. Note that the vertical length scale is
more magnified than Fig. 9 in order to visualize this fluctuation. Besides this fluctuation, the computed
values and the Yang—Mal model are shown to be in good agreement for the entire frequency range shown
here.

Finally the normalized time-averaged energy flow (e)/(e), at a location of x; = 1.1L averaged over the x,
direction is plotted in Fig. 15 as a function of the frequency. In the frequency range lower than about 2
MHz ((a/c))f < 0.05), the normalized energy is nearly unity indicating the full transmission of the wave
energy in the propagation direction. As the frequency increases, however, the transmitted energy flow ratio
decreases significantly, accompanied by a substantial fluctuation due probably to the irregular fiber
arrangement. The random composite analyzed here does not show any frequency bands where the wave
energy is perfectly cut off. This result shows that the energy transmission behavior is very sensitive to the
fiber arrangement.

As an attempt to interpret the result in Fig. 15 from a theoretical point of view, the decay of the wave
energy in the random composite is now estimated by the Yang-Mal model. The imaginary part of the
effective wave number k. determined by Eq. (16) gives the attenuation coefficient of the mean wave in the
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Fig. 13. Wave field in the composite with random fiber arrangement, ¢ = 0.25, at (a) | MHz ( fa/c; = 0.025), (b) 4 MHz ( fa/c, = 0.1)
and (¢) 7 MHz (fa/c, = 0.175).

random composite that reflects the scattering loss by the fibers. According to this, the energy of the wave
decays as exp(—2Im[ker]L) when it has propagated the length L of the composite. For ¢ = 0.25, this
quantity is computed from Eq. (16) and superimposed on the computational plots in Fig. 15. While the
result by the present analysis exhibits the considerable fluctuation mentioned above, the theoretical curve
by the Yang-Mal model shows monotonically-decreasing frequency dependence. It is shown though that
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Fig. 15. Variation of the normalized energy transmission with the frequency in the random composite. Symbols: present analysis, solid
line: generalized self-consistent (GSC) model by Yang and Mal (1994).

the attenuation predicted by the Yang-Mal model well reproduces the overall trend of the frequency-
dependent energy transmission behavior computed in the present analysis.

6. Concluding remarks

A computational procedure for multiple wave scattering in unidirectional fiber-reinforced composite
materials has been presented. The present study deals with the time-harmonic equations for the multiple
scattering of shear waves polarized parallel with the fibers expressed by the eigenfunction expansion, and a
collocation method is used to determine the expansion coefficients. For a practical frequency range relevant
to ultrasonic characterization of fiber composites, incorporation of a few leading terms in the expansions
can be sufficient, which facilitates the computation substantially together with the assumed periodicity of
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the fiber arrangement in the direction normal to the propagation direction. As an example, the shear wave
propagation in a unidirectional SiC/Ti-alloy composite has been analyzed, and the wave fields in the
composite have been demonstrated for periodic (square and hexagonal) fiber arrangements as well as for a
random fiber distribution. The phase velocity and the energy transmission characteristics in the composite
have been also illustrated as function of the frequency.

For the periodic fiber arrangements, the stop-band phenomenon has been observed in certain frequency
ranges that depend on the fiber arrangement and the fiber spacing. Examination of the energy flow asso-
ciated to the wave motion in the composite has shown that the motion within the stop bands are of a
standing-wave type, for which the energy flow is null or very low. For the random fiber arrangement, no
clear stop bands have been identified, although significant reduction of the energy transmission has been
observed as the frequency increases.

For both periodic and random cases, the computed phase velocities are in good agreement with the
theoretical curve given by an existing multiple scattering theory in the long wavelength region, reflecting the
insensitivity of the propagation behavior to the detailed microstructure. In the periodic cases, the phase
velocity has shown significant variation with the frequency in the vicinity of the stop bands. In the random
case, the phase velocity has shown only weak fluctuation from the theoretical curve due probably to the
scattering effect by the irregular fiber distribution.

The present analysis has shown the significant influence of the fiber arrangement on the wave propa-
gation behavior in periodic as well as random composites as the wavelength becomes comparable to the
fiber spacing. It is the subject of our on-going study to further carry out detailed examination of the in-
fluence of the perturbed or random fiber arrangement on the wave propagation characteristics based on the
computational procedure described here.
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