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Abstract

A computational procedure for multiple wave scattering in unidirectional fiber-reinforced composite materials is

presented. The present study deals with the time-harmonic propagation of shear waves polarized parallel to the fibers.

The exciting and scattered fields for each fiber are expressed by the eigenfunction expansion, and a collocation method

is used to determine the expansion coefficients numerically. With this procedure, detailed aspects of the shear wave

scattering and propagation in unidirectional SiC/Ti-alloy composite with periodic as well as random fiber arrangements

are demonstrated, including the dispersion relation and the energy transmission behavior. The analysis recovers that the

wave with a sufficiently long wavelength propagates as a sinusoidal plane wave insensitively to the fiber arrangement.

As the wavelength becomes comparable to the fiber spacing, the wave field gains complicated appearances specific to the

fiber arrangement. For the periodic fiber arrangements, it is shown that the wave ceases to propagate in the composite

in certain frequency bands. The wave fields in such stop bands are shown to possess a standing-wave nature and involve

spatially decaying amplitudes and vanishing energy flow in the propagation direction. Numerical results are also shown

for a random fiber distribution in order to demonstrate the applicability of the present scheme to arbitrary fiber

arrangements. The computed phase velocities and the energy transmission ratios for the random composite compare

favorably with those predicted by an existing multiple scattering theory.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Propagation of elastic waves in composite materials is one of the key issues regarding their dynamic

performance and nondestructive characterization. Ultrasonic nondestructive evaluation of composite

materials relies on the information of their wave velocity or attenuation properties obtained by the analysis

of transmitted or reflected ultrasonic signals (Kline, 1992). To enhance the qualitative as well as quanti-

tative understanding of the evaluation principles, it is of importance to gain detailed knowledge on the wave
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propagation behavior in composites. For fiber-reinforced composite materials, one needs to consider a

complex process of multiple scattering that occurs as the incident wave interacts with the fibers.

Multiple scattering of elastic waves in fiber-reinforced composite materials have been considered by

many authors, including Bose and Mal (1973, 1974), Varadan et al. (1978, 1986), Datta et al. (1984), Liu
and Kriz (1998), Kim (2003) to name but a few. Among them, Yang and Mal (1994), and then Huang and

Rokhlin (1995), applied a generalized self-consistent model of fiber composites to the Waterman–Truell

multiple scattering theory (Waterman and Truell, 1961) to extend its applicability to moderate fiber volume

fractions. Other theories so far formulated include the variational principles (Talbot and Willis, 1983), the

differential (incremental) scheme (Beltzer and Brauner, 1987; Biwa et al., 2003), etc, for randomly arranged

fiber composites. On the other hand, homogenization techniques based on asymptotic expansions or the

Bloch theorem have been applied to wave propagation in composites with regular and periodic fiber

arrangements (Nelson and Navi, 1975; Murakami and Hegemier, 1986; Naciri et al., 1994). Such periodic
composites recently attract much attention regarding the phononic band gap structures and their acoustic

applications (Kushwaha et al., 1993, 1994).

Recently, Cai and Williams (1999a) proposed a numerical simulation technique for large-scale multiple

scalar wave scattering in fiber-reinforced composites based on a procedure called scatterer polymerization.

In this procedure, a group of several scatterers is successively replaced by a single equivalent scatterer,

which enables to perform the computation for many-fiber problems with reasonable computational costs.

They demonstrated multiple scattering of a scalar shear wave in a unidirectional composite with square

fiber arrangements (Cai and Williams, 1999b,c). This technique is, however, not suitable for examining the
wave field within the composite, since the original fiber arrangements are lost in the polymerization pro-

cedure.

In order to carry out a more straightforward and detailed analysis of the wave field in fiber/matrix

composites, an alternative computational approach is presented in this paper for the multiple scattering

problem, where the time-harmonic wave field is expressed in terms of the eigenfunction expansion of the

scattered wave associated to each fiber. The expansion coefficients are determined numerically using a

collocation technique. In this paper, the shear wave mode with the polarization parallel to the fiber

direction is considered, as its scalar wave nature is suitable to delineate the essential features of multiple
scattering. The present analysis enables detailed examination of the wave structure in the composite in a

direct manner.

In what follows, first the basic formulation of the multiple scattering for the scalar shear wave in uni-

directional composites is summarized, and a computational procedure to attack the problem is put forward.

As an application of the present technique, the shear wave scattering and the overall wave propagation

behavior in unidirectional SiC fiber-reinforced Ti-alloy matrix composites are analyzed. Our attention is

first focused on the examples for regular fiber arrangements. Namely, for the square as well as hexagonal

fiber arrangements, the wave fields in the composite are demonstrated for different frequencies, and the
dispersion relation and the energy transmission behavior are illustrated. In addition, a case with irregular

distribution of fibers is also treated in order to demonstrate the applicability of the present scheme to

arbitrary fiber arrangements. The results obtained by the present analysis are discussed in comparison to

the results based on the above-mentioned multiple scattering model by Yang and Mal (1994).
2. Fundamental equations of multiple wave scattering

In this section, the basic equations for the multiple scattering of scalar wave in two-dimensional com-

posite media are recapitulated, which are common to the above-mentioned foregoing works, e.g. Varadan

et al. (1978), Datta et al. (1984). The present paper deals with a unidirectional fiber-reinforced composite
material consisting of an isotropic elastic infinite matrix (density q1, shear modulus l1) with N circular,
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isotropic elastic fibers of radius a (density q2, shear modulus l2), as schematically shown in Fig. 1. In the
x1–x2 plane shown in Fig. 1, the fibers can take an arbitrary arrangement. When the plane transverse (shear)
wave with polarization parallel to the fibers is incident in the positive x1 direction, the wave field within the
x1–x2 plane can be formulated in the framework of scalar wave propagation, since no mode conversion
occurs at wave scattering by each fiber and the only nontrivial displacement components are in the x3
direction.

In the absence of body forces, the equation of motion for the displacement u in the x3 direction
reads
o2

ox21

�
þ o2

ox22

�
u� 1

c2a

o2u
ot2

¼ 0; ð1Þ
for the matrix (a ¼ 1) and for the fibers (a ¼ 2), respectively, where ca ¼ ðla=qaÞ
1=2
is the shear wave

speed in the respective medium. As a monochromatic wave motion with temporal dependence expð�ixtÞ
is solely considered (x: angular frequency), Eq. (1) reduces to the scalar Helmholtz equation for
uðx1; x2Þ;
o2

ox21

�
þ o2

ox22

�
uþ k2au ¼ 0; ð2Þ
where ka is the wave number in each medium, i.e. ka ¼ x=ca (a ¼ 1; 2). Hereafter, the time-dependent factor
expð�ixtÞ is omitted in all relevant physical quantities and the complex notation is used, where real parts
are to represent the actual wave field. The incident wave is assumed to be a plane wave with unit amplitude
propagating in the positive x1 direction, expressed in complex notation as
uincðrÞ ¼ expðik1i1 � rÞ; ð3Þ

where r is the position vector and i1 the unit vector in the x1 direction.
In the presence of N fibers, the wave field in the matrix is written as
uðrÞ ¼ uincðrÞ þ
XN
i¼1

uscai ðrÞ; ð4Þ
where uscai ðrÞ denotes the wave scattered by the ith fiber. Since uscai ðrÞ is an out-going diverging solution
to Eq. (2), it can be expanded using the eigenfunctions in local polar coordinates as (Pao and Mow,

1971)
uscai ðrÞ ¼
X1
n¼�1

binHnðk1jr� rijÞ expðinhiÞ; ð5Þ
x2

Wave
r

r-ri

θi

ri

O x1

Fig. 1. Schematic representation of a unidirectional fiber-reinforced composite.
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where ri is the position of the center of the ith fiber, and hi is the angular coordinate when r is viewed from ri
(Fig. 1), and Hnð�Þ is the nth order Hankel function of the first kind. The expansion coefficients bin
ðn ¼ 0;	1;	2; . . .Þ are yet unknown parameters.
The wave field near ri that would result if the ith fiber were not there is referred to as the exciting field to

that fiber, and is expressed as
uexci ðrÞ ¼ uincðrÞ þ
XN
j¼1
j 6¼i

uscaj ðrÞ ¼
X1
n¼�1

ainJnðk1jr� rijÞ expðinhiÞ; ð6Þ
since it is a solution to Eq. (2) with no singularity at ri, where ain ðn ¼ 0;	1;	2; . . .Þ are the expansion
coefficients and Jnð�Þ is the nth order Bessel function of the first kind. The ith fiber is irradiated by the
exciting field uexci and gives rise to the scattered wave uscai . It is known that for circular cylindrical fibers

bonded to the matrix, the coefficients in their expansions can be related linearly as
bin ¼ Tnain; Tn ¼
l1k1J

0
nðk1aÞJnðk2aÞ � l2k2Jnðk1aÞJ 0

nðk2aÞ
l2k2Hnðk1aÞJ 0

nðk2aÞ � l1k1H 0
nðk1aÞJnðk2aÞ

; ð7Þ
where the prime (0) denotes differentiation of the Bessel or Hankel functions with respect to their arguments.
Here, Tn are the components of the so-called T -matrix (Waterman, 1969), which becomes diagonal for
circular fibers.

Likewise, the refracted wave field inside the ith fiber is expanded as
urefi ðrÞ ¼
X1
n¼�1

cinJnðk2jr� rijÞ expðinhiÞ; ð8Þ
cin ¼ Snain; Sn ¼
Jnðk1aÞ þ TnHnðk1aÞ

Jnðk2aÞ
: ð9Þ
The relations in Eqs. (7) and (9) stem from the requirement of the continuity of the displacement and the

shear traction at the fiber–matrix interface.

From the above equations, the expansion coefficients for the scattered, exciting and refracted waves can

be determined, which in turn give the wave field in the composite. For a large number of fibers, however, it

is intractable to seek for an analytical solution of the above system of equations. In most of the foregoing

multiple scattering theories (Sobczyk, 1985; Varadan et al., 1989), the positions of the fibers are assumed as

random variables and the configurational average of the wave field is considered. Assumptions such as the
quasi-crystalline approximation or the total wave approximation are then employed to truncate the infinite

hierarchy of the resulting set of integral equations, yielding some well known formulae (Foldy, 1945;

Waterman and Truell, 1961). In the present paper, the above equations are solved directly using a nu-

merical collocation technique. Therefore, the present procedure as described below is capable of dealing

with regular or irregular fiber arrangements explicitly.
3. Computational procedure

In order to solve the equations formulated above, the infinite sums of the eigenfunction expansions in

Eqs. (5), (6) and (8) are truncated at a finite level, i.e. n ¼ 0;	1;	2; . . . ;	nmax The integer parameter nmax
is chosen as an appropriate number depending on each specific problem. When the wavelength of the
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incident wave is large compared to the fiber diameter, it is often sufficient to take the sums up to small

nmax.
When Eqs. (3), (5) and (7) are substituted into Eq. (6), one obtains
Xnmax
n¼�nmax

ainJnðk1jr� rijÞ expðinhiÞ ¼ expðik1i1 � rÞ þ
XN
j¼1
j 6¼i

Xnmax
m¼�nmax

TmajmHmðk1jr� rjjÞ expðimhjÞ; ð10Þ
which constitutes a set of equations in terms of the N � ð2nmax þ 1Þ expansion coefficients of the exciting
field ain ði ¼ 1; 2; . . . ;N ; n ¼ 0;	1;	2; . . . ;	nmaxÞ. In the present analysis, a collocation method is em-
ployed to obtain a linear set of N � ð2nmax þ 1Þ equations to determine these coefficients, i.e., by evaluating
the coefficients of ain in Eq. (10) at (2nmax þ 1) points for each of N fibers. In the present modeling,

(2nmax þ 1) collocation points are taken at equally distanced positions on the circular boundary between the
matrix and each fiber.

When analyzing wave propagation in fiber composites, one of our main interests lies in the wave

structure along the propagation path. To keep the computation tractable while retaining enough degrees of

freedom in the propagation direction, it appears reasonable to assume certain periodicity of the fiber ar-
rangement in the direction perpendicular to the propagation direction. To this purpose, as shown in Fig. 2,

the fiber arrangement in the composite is assumed to be a consequence of building up ‘‘fundamental’’

blocks in the x2 direction. A fundamental block has a dimension of L� H and contains N fibers, in which
the arrangement of the fibers can be either regular or random. The whole composite is constructed by

repeating these blocks in the vertical direction, so that infinite fibers are distributed within the region

0 < x1 < L.
In this situation, it is expected that the wave field in the composite becomes periodic in the x2 direction

with period H . Therefore, the exciting field for a generic fiber in a fundamental block becomes identical to
those for the corresponding fibers in other blocks. When Eq. (10) is applied to the whole composite and a

use is made of this periodicity nature, the equations for the whole system can be reduced to
x2

ri+Hi2

Hi2

H ri

-Hi2

x1

ri -Hi2

L

Fig. 2. Periodic structure of fundamental blocks.
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Xnmax
n¼�nmax

ainJnðk1jr� rijÞ expðinhiÞ

¼ expðik1i1 � rÞ þ
X1
p¼�1

XN
j¼1
j 6¼i

Xnmax
m¼�nmax

TmajmHmðk1jr� ðrj þ pH i2ÞjÞ expðimhjpÞ

þ
X1
p¼�1
p 6¼0

Xnmax
m¼�nmax

TmaimHmðk1jr� ðri þ pH i2ÞjÞ expðimhipÞ; ð11Þ
where i2 is the unit vector in the x2 direction, and hip is the angular coordinate when the position r is viewed

from the fiber at ri þ pH i2, corresponding to the ith fiber in a block translated by p blocks in the x2 direction
(p ¼ 0;	1;	2; . . .). Thus the equations for infinite fibers in the region 0 < x1 < L of the composite have
been represented in terms of the expansion coefficients for the N fibers in one fundamental block covering
0 < x1 < L, 0 < x2 < H .
In this formulation, the wave field in the composite is characterized by N � ð2nmax þ 1Þ parameters. In

the case when nmax can be chosen as a small number (i.e. when the frequency under question is relatively
low), this is considered to be particularly advantageous from a computational viewpoint, compared to

other numerical methods such as finite element or boundary element techniques where the whole regions or

the fiber–matrix boundaries need to be discretized into many small elements.

If once the coefficients ain are determined, the wave field in the composite can be calculated as
uðrÞ ¼ expðik1i1 � rÞ þ
XN
i¼1

Xnmax
n¼�nmax

Tnain
X1
p¼�1

Hnðk1jr� ðri þ pH i2ÞjÞ expðinhipÞ ð12Þ
in the matrix, and
urefi ðrÞ ¼
Xnmax

n¼�nmax

SnainJnðk2jr� rijÞ expðinhiÞ ð13Þ
in the fiber at ri.
4. Application to periodic composites

4.1. Computational model

The computational procedure proposed above is now applied to analyze the wave scattering and the

overall wave propagation in a unidirectional composite consisting of Ti-alloy matrix and SiC fibers. The

material properties of these constituents are summarized in Table 1. Effects of the coating layer or the fiber/
matrix debonding damage in this composite system have been analyzed previously (Rokhlin et al., 1995;
1

ial parameters used for numerical analysis

rix (Ti-alloy) Fiber (SiC)

GPa) q1 (kg/m
3) l2 (GPa) q2 (kg/m

3)

5400 177 3200
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Biwa and Shibata, 2000). In this paper, however, such effects are ignored to keep simplicity of the analysis:

the fibers are directly bonded to the matrix and the fiber radius is set as 71 lm (Rokhlin et al., 1995). The
extension to the case involving the finite compliance of the fiber–matrix interface is not a difficult task as it

can be incorporated by modification of the T -matrix formulation.
In this chapter, the composites with regular and periodic fiber arrangements are examined. Two types of

fiber arrangements are considered in the fundamental block. The first case is a regular square arrangement

with 80 fibers in the x1 direction and 2 fibers in the x2 direction, Fig. 3(a). The second case is a hexagonal
arrangement, having 160 fibers likewise in the fundamental block as in Fig. 3(b). By changing the fiber

spacing and the total size of the fundamental block, the volume fraction of the fibers in a fundamental

block is varied in the numerical model.

When the frequency is sufficiently low and the wavelength is much larger than the fiber radius, the

eigenfunction expansion of the wave field only requires a few leading terms. As the wavelength becomes
shorter (as the frequency becomes higher), an increasing number of terms need to be included in the

analysis. The necessity of higher-order terms also depends on the acoustic mismatch between the matrix

and fibers. After preliminary numerical experiments, the required number of the n-terms was estimated as a
function of the frequency. As a result, it has been found for the present SiC/Ti-alloy composite system that

for a frequency lower than 4 MHz it is numerically sufficient to take nmax to be 2. For an intermediate range
of 4–10 MHz, nmax is taken as 3 or 4, while for the range of 10–15 MHz, nmax is taken as 5 or 6. For a typical
example, Fig. 4 shows a part of the total wave field Re½u� along the x1-axis at x2 ¼ H=2 for different
truncation levels of nmax for the square fiber arrangement and for the frequency of 5 MHz, where the
truncation at nmax ¼ 3 is shown to be sufficient.
The influence of truncating the sums over p in Eqs. (11)–(13) was also examined, and the summation up

to at least ±100, ±200 and ±500 was typically required from a numerical viewpoint for the above three

frequency ranges, respectively, for the particular composite system analyzed here. The level of truncation

was verified on a numerical basis by confirming satisfactory agreement between the numerical results

obtained with different levels of truncation. Furthermore, the numerical results were found to be insensitive

to the particular choice for the location of the equally spaced collocation points on the fiber–matrix

boundaries.
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Fig. 3. Regular fiber distributions in a fundamental block, (a) square arrangement, (b) hexagonal arrangement.
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the frequency of 5 MHz.
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4.2. Wave field in the composite

For the unidirectional SiC/Ti-alloy composite, the wave field is computed by Eq. (12) (in the matrix) and

Eq. (13) (in the fibers) after determining the eigenfunction expansion coefficients by the numerical collo-

cation procedure described above. For the fiber volume fraction / ¼ 0:25, the wave fields in the composite
given by Re½u� are shown at different frequency levels, for the square fiber arrangement in Fig. 5 and for the
hexagonal fiber arrangement in Fig. 6. For this fiber volume fraction and the assumed fiber radius of 0.071

mm, the center-to-center fiber spacing is about 0.25 and 0.27 mm for the square and hexagonal fiber

arrangements, respectively.

Figs. 5(a) and 6(a) correspond to the frequency f ¼ x=ð2pÞ of 1 MHz, for which the wavelength in the
matrix is c1=f ffi 2:89 mm (the ratio of the fiber radius to the wavelength fa=c1 ffi 0:025), and the wave
fields are shown for a region 0 < x1 < 20 mm and 0 < x2 < 0:5 mm that approximately covers one

fundamental block. Figs. 5(b) and 6(b) for 4 MHz, c1=f ffi 0:72 mm (fa=c1 ffi 0:1), are for one quarter of
the fundamental block, 0 < x1 < 5 mm, and Figs. 5(d) and 6(d) for 10 MHz, c1=f ffi 0:29 mm

(fa=c1 ffi 0:25), are for one tenth of it, 0 < x1 < 2 mm. Likewise, Fig. 5(c) for 6.6 MHz (fa=c1 ffi 0:16)
corresponds to the region 0 < x1 < 4 mm, and Fig. 6(c) for 8.4 MHz (fa=c1 ffi 0:21) to 0 < x1 < 3 mm.
In this way, more or less similar numbers of the wavelengths are illustrated for all frequencies in Figs. 5

and 6.
From Figs. 5(a) and 6(a), it is readily found that at the lowest frequency of 1 MHz, the wave fields in

the composite for square and hexagonal fiber arrangements do not differ from each other very much.

Furthermore, they appear to be an essentially sinusoidal plane wave, indicating the negligible influence

of the fiber arrangement on the wave field at sufficiently low frequency. However, as the frequency be-

comes higher, the wave fields show different appearances depending on the fiber arrangement, and are

no longer simple plane waves. Especially in the high frequency cases of Figs. 5(d) and 6(d), the wave

fields are fairly complex as the fiber spacing is comparable to the wavelength. In these plots, some of the

fiber positions can be visibly identified as relatively flat spots since the fibers are stiffer than the
matrix.

It should be noted that while Fig. 5(a), (b) and (d) as well as Fig. 6(a), (b) and (d) show the behavior of

propagating waves with spatial periodicity, Figs. 5(c) and 6(c) exhibit completely different characteristics.

Namely, at 6.6 MHz in the case of square arrangement and at 8.4 MHz in the case of hexagonal ar-

rangement, the wave amplitude appears to decay drastically as one goes to the positive x1 direction. These
frequencies correspond to the so-called stop bands, which will be discussed in more detail in the following

sections.



Fig. 5. Wave field in the composite with square fiber arrangement, / ¼ 0:25, at (a) 1 MHz ( fa=c1 ffi 0:025), (b) 4 MHz ( fa=c1 ffi 0:1),
(c) 6.6 MHz ( fa=c1 ffi 0:16) and (d) 10 MHz ( fa=c1 ffi 0:25).
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4.3. Dispersion relation

Fig. 7 shows the computed total wave field along the x1 direction in the composite with the square fiber
arrangement, when the frequency is 1 MHz and the fiber volume fraction is / ¼ 0:25 and 0.5. The curves in
Fig. 7 represent the total wave field along the centerline of the fundamental block at x2 ¼ H=2, with the
arrows indicating the composite region sandwiched by the two semi-infinite regions of the matrix. These

curves are compared to the case of / ¼ 0 showing the incident wave in the matrix that would result if there
were no fibers present. As the fiber volume fraction is increased, the wavelength of the total wave in the

composite increases, which means that the phase velocity in the composite increases as the fiber fraction is

increased. By fitting these curves with a sinusoidal function or applying the fast Fourier transform (FFT) to

them, the wave number in the composite can be identified. This procedure was also applied to other
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computed wave fields, and the wave number in the composite was obtained as a function of the frequency,

for the square as well as for the hexagonal fiber arrangements.

The relation between the so-obtained wave number k and the frequency f is plotted in Fig. 8(a) and (b)
for the square and hexagonal fiber arrangements, respectively, and for two different fiber volume fractions.

In Fig. 8, the wave numbers are normalized as kd=p, where the center-to-center fiber spacing d is given by
d ¼
ffiffiffiffi
p
/

r
a ð14aÞ
for the square arrangement, and by
d ¼
ffiffiffiffiffiffiffiffiffiffi
2pffiffiffi
3

p
/

s
a ð14bÞ



Fig. 6. Wave field in the composite with hexagonal fiber arrangement, / ¼ 0:25, at (a) 1 MHz ( fa=c1 ffi 0:025), (b) 4 MHz ( fa=c1 ffi 0:1),
(c) 8.4 MHz ( fa=c1 ffi 0:21) and (d) 10 MHz ( fa=c1 ffi 0:25).
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for the hexagonal arrangement, for each fiber volume fraction /. These plots show the dispersion relation
of the shear wave in the periodic composite at hand. At some locations of the dispersion curve, however, the

wave number appears to stagnate against increasing frequency. In other words, the frequency exhibits a

finite jump at these wave numbers.

For the square arrangement, this has occurred at kd ¼ p and kd ¼ 2p, corresponding to the Bragg re-
flection well known in solid state physics (Kittel, 1976), from the neighboring fiber planes normal to the

propagation direction. For the hexagonal arrangement, the corresponding locations are found at kd ¼ 4p=3
and kd ¼ 2p. The former condition corresponds to the Bragg reflection from the fiber planes inclined by p=6
rad to the propagation direction, while the latter to the reflection from the planes normal to the propa-

gation direction. The frequency ranges giving the above tendency are referred to as stop bands, in common

terminology for the wave propagation in periodic systems. The frequencies for Figs. 5(c) and 6(c), where the

wave amplitude has been found to decay spatially, are within the stop bands for the composite.
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4.4. Phase velocity

In Fig. 9(a) and (b), the phase velocity of the composite is plotted as a function of the frequency for the

fiber volume fractions / ¼ 0:25 and 0.5, for the square and hexagonal arrangements, respectively. The
phase velocity has been obtained from the dispersion curves in Fig. 8 by the relation c ¼ x=k and nor-
malized by the matrix shear wave speed c1 ffi 2887 m/s. It is noted though that within the stop bands in-
dicated by arrows the wave ceases to possess a propagating nature and the usage of the term of phase
velocity becomes somewhat inadequate. As shown in Fig. 9, the phase velocity shows substantial fluctu-

ation in the vicinity of the stop bands. This feature is akin to the experimental results by Kinra and Ker

(1983) and Henderson et al. (2001) for the longitudinal wave propagation in periodic particle-reinforced

composites.
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According to the multiple scattering theory by Waterman and Truell (1961), the effective complex wave
number keff of the mean wave in a random fiber composite is given by
keff
k1

� �2
¼ 1

�
� 2insF ð0Þ

k21

�2

� 2insF ðpÞ
k21

� �2

; ð15Þ
where ns ¼ /=ðpa2Þ is the number of fibers in a unit volume. In the above expression, the complex quantities
F ð0Þ and F ðpÞ are the forward and backward scattering amplitudes for a single fiber embedded in the
infinite matrix.

The Waterman–Truell formula in Eq. (15) was derived by neglecting the statistical correlation between

the scatterer positions in the medium, and its applicability to dense fiber distribution becomes questionable.

Based on the concept of a generalized self-consistent model, Yang and Mal (1994) modified the Waterman–

Truell theory, and showed that the complex wave number of the composite satisfies
1 ¼ 1

�
� 2insF ð0Þ

k2eff

�2

� 2insF ðpÞ
k2eff

� �2

: ð16Þ
The forward and backward scattering amplitudes in the above expression correspond to a composite

scatterer made of the fiber and the annular concentric matrix, which is embedded in an infinite medium

having the averaged macroscopic property of the composite. Since these quantities are implicitly dependent

on the unknown variable keff , the above equation is solved iteratively until sufficient convergence is reached.
The phase velocity is obtained from the real part of the complex wave number as c ¼ x=Re½keff �. In Fig. 9,
the phase velocities computed by the Yang–Mal model, which considers random fiber arrangements, are
compared to the results obtained from the present numerical scattering analysis.
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Fig. 8. Dispersion relation between the frequency and the normalized wave number for the composite with / ¼ 0:25 and 0.5, for
(a) square and (b) hexagonal fiber arrangements.
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Comparing the results in Fig. 9, it is seen that the Yang–Mal model gives the phase velocities that are

close to the present results for both 25% and 50% fiber volume fractions and for both square and hexagonal
fiber arrangements, except in the neighborhood of the stop bands identified by the arrows. When the

frequency is sufficiently low, the phase velocities of the composite for square and hexagonal fiber ar-

rangements are both indistinguishable from the results by the Yang–Mal model. Thus one recovers that the

low frequency (long wavelength) propagation behavior is not sensitive to the fiber arrangement, as already

seen in the wave fields shown in Figs. 5(a) and 6(a).

4.5. Energy transmission

To discuss in detail the character of the wave fields shown above, the energy flow associated to the wave

motion is considered. When the complex notation is employed to denote the wave displacement u, the time-
averaged energy flow across a surface normal to the propagation direction is given by (Pao and Mow, 1971)
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heiðx1Þ ¼ � 1

H
ix
4
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l
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ox1
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�
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ox1

� ��

u
�
dx2; ð17Þ
when averaged along the x2 direction, where the shear modulus l takes on a value of l1 or l2 depending on
the position on the integration path. The superscript (*) denotes the complex conjugate of a complex

variable. In the absence of the fibers, the time-averaged energy flow per unit area of the surface normal to

the propagation direction is given by
hei0 ¼
xk1l1
2

; ð18Þ
when the wave has the unit amplitude. The normalized energy flow heiðx1Þ=hei0 then represents the ratio of
the transmitted energy flow of the total wave in the composite to that of the incident wave.
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Since both the matrix and the fibers are assumed elastic here, the conservation of the energy implies that

heiðx1Þ=hei0 is independent of x1. This has been verified in the present numerical analysis within the ac-
curacy of the computation. So the attention is paid to the value of heiðx1Þ=hei0 at a single location of
x1 ¼ 1:1L (just past the composite region) in this discussion.
The values of hei=hei0 are thus plotted against the frequency in Fig. 10 for the square and the hexagonal

arrangements when the fiber volume fraction is 0.25. In Fig. 10(a) for the square arrangement, it is shown

that below 5 MHz roughly the normalized energy flow is almost unity. Therefore, the wave fields shown in

Fig. 5(a) (1 MHz) and (b) (4 MHz) corresponds to the case where the energy is fully transmitted in the

propagation direction. On the other hand, in a finite frequency band containing the frequency of 6.6 MHz,

relating to Fig. 5(c), the level of the energy flow is seen to be null. This indicates that the wave field in Fig.

5(c) corresponds to a standing wave rather than a propagating wave. In fact, an inspection of the time-

dependent wave fields Re½u expð�ixtÞ� for different t has revealed that at 6.6 MHz the particle points in the
entire domain move in phase. At 10 MHz, Fig. 5(d), the wave has recovered a propagating nature that

transports the full wave energy. The two stop bands shown in Fig. 10(a) coincides with the frequency

regions with constant wave numbers at kd ¼ p and 2p in Fig. 8(a).
A similar trend can be seen in Fig. 10(b) for the hexagonal case, which confirms that the wave fields at 1

MHz, Fig. 6(a), and 4 MHz, Fig. 6(b), are fully propagating ones, while that at 8.4 MHz, Fig. 6(c), is of a
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standing-wave nature. The wave field at 10 MHz shown in Fig. 6(d) corresponds to a pass band, though the

energy transmission ratio is not unity but about 0.88. The two stop bands in Fig. 10(b) correspond to the

wave numbers kd ¼ ð4=3Þp and 2p as indicated in Fig. 8(b). In the second stop band in Fig. 10(b), it is seen
that the energy transmission does not completely vanish but a small portion of the energy is transmitted to
the forward direction. In order to fully interpret such characteristics, computations of the band gap

structure for the whole Brillouin zone as presented by Kushwaha et al. (1993) seem more appropriate.

In passing, it is noted that the computation of the energy transmission for finer frequency divisions has

shown an oscillatory behavior especially near the stop bands, as demonstrated in Fig. 11. In the previous

figure (Fig. 10), such oscillations were not apparent as relatively coarse frequency intervals were employed

to outline the overall behavior. Fig. 11 compares the oscillatory frequency dependence of the energy

transmission near the first stop band of the square arrangement (5–9 MHz), for the present composite

model (L ¼ 20:2 mm, 80 · 2 fibers) and for another model with shorter L (L ¼ 6:54 mm, 26 · 6 fibers) with
the same fiber volume fraction, / ¼ 0:25. The frequency intervals of these oscillations are well approxi-
mated by c1=ð2LÞ, indicating an effect due to the finite length of the composite region L employed in the
computational modeling. It is then expected that these oscillation tend to vanish for the infinitely extended

composite with complete periodicity.
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Fig. 11. Frequency dependence of the normalized energy transmission near the first stop band for the square arrangement with

/ ¼ 0:25, for (a) the composite with L ¼ 20:2 mm and (b) the composite with L ¼ 6:54 mm.
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5. Application to a random composite

5.1. Computational model

As stated before, the present computational scheme is capable of dealing with arbitrary fiber arrange-

ments in the fundamental block. The results for periodic arrangements demonstrated above have recovered

some features pertinent to the wave propagation in periodic systems. In this chapter, some examples are

illustrated for the wave propagation characteristics in a composite with random fiber distribution.

In the examples in the previous chapter, the height of the fundamental block H corresponded to two

fiber arrays (Fig. 3) taking advantage of the periodic nature of the fiber arrangement. In order to model a

random distribution while to keep the computational demand in a reasonable range, the fundamental block

of the dimension L ¼ 6:532 mm and H ¼ 1:562 mm is employed. Within this block, total of 162 fibers are
arranged randomly according to a numerical algorithm called random sequential adsorption (RSA) (Feder,

1980) with a supplementary condition that the distance between two neighboring fiber centers meets

jri � rjjP 2:01a ði 6¼ jÞ, as shown in Fig. 12. The fibers located near the boundaries x2 ¼ 0 and x2 ¼ H are

treated by the periodicity requirement common in RSA. This results in the fiber volume fraction / ¼ 0:25
that is fixed in the analysis of this chapter.

The arrangement in Fig. 12 is considered to be one realization of random fiber distributions. In order to

extract the characteristics of the mean wave or the so-called coherent wave (Tourin et al., 2000), compu-

tations are required for many of such arrangements. The purpose of this chapter is not to seek for this.
Instead, only one realization of Fig. 12 is employed to compute the wave propagation behavior (the wave

field, the phase velocity and the energy transmission) of a random composite and to show major differences

from the periodic composites shown above.

The material properties of the matrix and the fiber are the same as in Table 1. For the fixed fiber dis-

tribution of Fig. 12, the frequency is changed from 0 to 10 MHz (0 < ða=c1Þf < 0:25 roughly). It is noted
that in a random composite, the fiber-to-fiber distance is not a fixed length but distributed in a certain

range. As seen in Fig. 12, some of the fibers are arranged very close to each other. Due to this nature, the

truncation levels of the parameters such as nmax have been validated numerically again for each frequency,
and higher values are eventually employed than in the corresponding cases of periodic arrangements shown

above.
x1

x2

Fig. 12. Random fiber arrangement in the fundamental block (shown by the broken lines) used in the numerical analysis, together with

neighboring blocks containing the same fiber arrangement.
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5.2. Wave field in the composite

The wave fields corresponding to Figs. 5 and 6 are shown in Fig. 13 for the random composite when the

frequency is 1 MHz (ða=c1Þf ffi 0:025), 4 MHz (ða=c1Þf ffi 0:1) and 7 MHz (ða=c1Þf ffi 0:175). For these
three frequencies, the wave field Re½u� in the fundamental block is demonstrated. Fig. 13(a) for 1 MHz
shows a sinusoidal plane wave similar to the corresponding periodic cases, Figs. 5(a) and 6(a), indicating

again the insensitivity of the long wavelength propagation characteristics to the detailed fiber arrangement.

Note again that the fiber locations can be identified visually as discrete spots.

The case with 4 MHz, Fig. 13(b), shows considerable deviation from sinusoidal plane wave forms. This is

in contrast to the periodic cases for the same frequency, Figs. 5(b) and 6(b), and partly attributed to the

irregular nature of the fiber arrangement. Also, in the random arrangement, many of the fibers are located

closer to each other than in the periodic cases, so the local interaction among the fibers may be more
prominent in the random case.

In Fig. 13(c), the wave field for 7 MHz is shown. This wave field is considered to be the outcome of

significant scattering from each of the fibers arranged irregularly. In particular, some high peaks are seen

near the left boundary of the fundamental block. The net time-averaged energy flow in the propagation

direction at this frequency is less than 40% of that for the incident wave, as shown in Fig. 15 given below.

This suggests the presence of substantial back scattering in the composite. Contrary to the periodic com-

posites, however, the scattered waves by the fibers do not interfere constructively in the random composite.

5.3. Phase velocity and energy transmission

The wave number and the phase velocity in the composite have been identified from the computed wave
field. To this end, the wave field Re½u� has been averaged in the x2 direction, and a similar FFT procedure as
used in Section 4 has been employed in order to extract the wave number. Although the local wave number

of the computed average wave field varies slightly depending on the spatial position x1 it is a single wave
number of an averaged character that is obtained by the present procedure. The so-obtained dispersion

relation has shown more or less linear increase of the wave number with the frequency. Although the

considered frequency range contains the first stop bands of the square and hexagonal composites with the

same fiber fraction, the result for the random composite has not revealed a frequency region giving a

constant wave number that indicates stop bands.
The phase velocity in the random composite computed from the wave number is plotted in Fig. 14 as a

function of the frequency, with the theoretical curve by the Yang–Mal model in Eq. (16). In Fig. 14, the

computed phase velocity shows a weak fluctuation with the frequency. Note that the vertical length scale is

more magnified than Fig. 9 in order to visualize this fluctuation. Besides this fluctuation, the computed

values and the Yang–Mal model are shown to be in good agreement for the entire frequency range shown

here.

Finally the normalized time-averaged energy flow hei=hei0 at a location of x1 ¼ 1:1L averaged over the x2
direction is plotted in Fig. 15 as a function of the frequency. In the frequency range lower than about 2
MHz (ða=c1Þf < 0:05), the normalized energy is nearly unity indicating the full transmission of the wave
energy in the propagation direction. As the frequency increases, however, the transmitted energy flow ratio

decreases significantly, accompanied by a substantial fluctuation due probably to the irregular fiber

arrangement. The random composite analyzed here does not show any frequency bands where the wave

energy is perfectly cut off. This result shows that the energy transmission behavior is very sensitive to the

fiber arrangement.

As an attempt to interpret the result in Fig. 15 from a theoretical point of view, the decay of the wave

energy in the random composite is now estimated by the Yang–Mal model. The imaginary part of the
effective wave number keff determined by Eq. (16) gives the attenuation coefficient of the mean wave in the



Fig. 13. Wave field in the composite with random fiber arrangement, / ¼ 0:25, at (a) 1 MHz ( fa=c1 ffi 0:025), (b) 4 MHz ( fa=c1 ffi 0:1)
and (c) 7 MHz ( fa=c1 ffi 0:175).
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random composite that reflects the scattering loss by the fibers. According to this, the energy of the wave

decays as expð�2Im½keff �L) when it has propagated the length L of the composite. For / ¼ 0:25, this
quantity is computed from Eq. (16) and superimposed on the computational plots in Fig. 15. While the

result by the present analysis exhibits the considerable fluctuation mentioned above, the theoretical curve

by the Yang–Mal model shows monotonically-decreasing frequency dependence. It is shown though that
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Fig. 14. Frequency dependence of the phase velocity in the random composite for / ¼ 0:25. Symbols: present analysis, solid line:
generalized self-consistent (GSC) model by Yang and Mal (1994), chained line: matrix shear wave speed.
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the attenuation predicted by the Yang–Mal model well reproduces the overall trend of the frequency-

dependent energy transmission behavior computed in the present analysis.
6. Concluding remarks

A computational procedure for multiple wave scattering in unidirectional fiber-reinforced composite

materials has been presented. The present study deals with the time-harmonic equations for the multiple

scattering of shear waves polarized parallel with the fibers expressed by the eigenfunction expansion, and a

collocation method is used to determine the expansion coefficients. For a practical frequency range relevant

to ultrasonic characterization of fiber composites, incorporation of a few leading terms in the expansions
can be sufficient, which facilitates the computation substantially together with the assumed periodicity of
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the fiber arrangement in the direction normal to the propagation direction. As an example, the shear wave

propagation in a unidirectional SiC/Ti-alloy composite has been analyzed, and the wave fields in the

composite have been demonstrated for periodic (square and hexagonal) fiber arrangements as well as for a

random fiber distribution. The phase velocity and the energy transmission characteristics in the composite
have been also illustrated as function of the frequency.

For the periodic fiber arrangements, the stop-band phenomenon has been observed in certain frequency

ranges that depend on the fiber arrangement and the fiber spacing. Examination of the energy flow asso-

ciated to the wave motion in the composite has shown that the motion within the stop bands are of a

standing-wave type, for which the energy flow is null or very low. For the random fiber arrangement, no

clear stop bands have been identified, although significant reduction of the energy transmission has been

observed as the frequency increases.

For both periodic and random cases, the computed phase velocities are in good agreement with the
theoretical curve given by an existing multiple scattering theory in the long wavelength region, reflecting the

insensitivity of the propagation behavior to the detailed microstructure. In the periodic cases, the phase

velocity has shown significant variation with the frequency in the vicinity of the stop bands. In the random

case, the phase velocity has shown only weak fluctuation from the theoretical curve due probably to the

scattering effect by the irregular fiber distribution.

The present analysis has shown the significant influence of the fiber arrangement on the wave propa-

gation behavior in periodic as well as random composites as the wavelength becomes comparable to the

fiber spacing. It is the subject of our on-going study to further carry out detailed examination of the in-
fluence of the perturbed or random fiber arrangement on the wave propagation characteristics based on the

computational procedure described here.
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